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1.    Introduction 

 

Convexity theory has become a rich source of inspiration in pure and 

applied sciences. This theory had not only stimulated new and deep results in 

many branches of mathematical and engineering sciences, but also provide us a 

unified and general framework for studying a wide class of unrelated problems. 

For recent applications, generalizations and other aspects of convex functions and 

their variant forms, see [1-27] and the references therein. 

In recent years, the convex sets and convex functions have been extended 

and generalized in several directions using novel and innovative ideas and 

techniques. Varosanec [22] introduced the class of h-convex functions. This class 

of functions unifies various classes of convex functions and is being used to 

discuss several concepts in a unified manners. Toader [25] defined the m -

convexity, an intermediate between the usual convexity and starshaped property. 

Park [23] considered the class of ),( ms -convex functions. An important class of 

convex functions, which is called harmonic convex function, was introduced and 

studied by Anderson et al. [1] and Iscan [12].  

We would like to emphasize that ),( ms -convex functions and harmonic 

functions are two distinct classes of convex functions. It is natural to introduce a 

new class of convex functions, which unifies these concepts. Inspired and 

motivated by the ongoing research activities in this dynamic field, we introduce a 

new class of convex functions, which is called extended harmonic ),,( msh -
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convex function. One can easily show that extended harmonic ),,( msh -convex 

functions include Godunova-Levin harmonic convex functions, extended 

harmonic s -convex functions and harmonic m -convex functions as special cases. 

We also obtain several new Hermite-Hadamard type inequalities. Our results 

include several previously known and new results as special cases. It is expected 

that results obtained in this paper may  inspire the readers to discover new 

applications of the extended harmonic ),,( msh -convex functions in various 

branches of pure and applied sciences. This is another direction of future research.  

 

2. Preliminaries 

 

 First of all, we recall the following basic concepts. To convey an idea of the 

harmonic convex set, we include the formal defitiniton of the harmonic convex 

set. 

Definition 1. [12] A set = [ , ] \{0}I a b   is said to be a harmonic convex set, if  

[0,1].,,,
)(1




tIyxI
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     We now consider the new concept of  extended harmonic ( , , )h s m convex 

functions, which is the main motivation of this  paper.  

Definition 2. Let : = [0,1]h J   a nonnegative function. A function 

: = [ , ] \{0}f I a b     is said to be extended harmonic ),,( msh -convex 

function in second sense, where 1,1][s , (0,1]m  and ,a b ma I  ,  if  

(0,1).,,),()()())((1
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The function f  is called Jensen type extended harmonic ),,( msh -convex 

function.  

Now we discuss some special cases of extended harmonic ),,( msh  convex 

function. 

I. If ,= sth 1= s  and 1=m  in Definition 2, then it reduces to the Definition of 

Godunova-Levin harmonic convex functions. 

Definition 3.[16] A function : = [ , ] \{0}f I a b     is said to be Godunova-

Levin harmonic convex, if  

(0,1).,,),(
1

)(
1

1

)(1
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II. If sth =  in Definition 2, then it reduces to the Definition of harmonic ),( ms -

convex functions.  
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Definition 4. [2] A function : = [ , ] \{0}f I a b     is said to be harmonic 

),( ms -convex function in second sense, where (0,1]s  and (0,1]m , if  

(1 ) ( ) ( ), , , [0,1].
(1 )

s smxy
f t f x mt f y x y I t

tx m t y

 
      

    
We remark that if 1, ,t y a   then ( ) ( )f my mf a . In this case, we say that the 

function f  is subhomogenous. 

III. If 1=m  in Definition 2, then it reduces to the Definition of extended 

harmonic ),( sh -convex functions.  

Definition 5. A function : = [ , ] \{0}f I a b     is said to be extended 

harmonic ),( sh -convex function in second sense, where 1,1][s , if  

(0,1).,,),()()())((1
)(1
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f ss

 

IV. If 1=s  in Definition 2, then it reduces to the Definition of harmonic ),( mh -

convex functions.  

Definition 6. A function : = [ , ] \{0}f I a b     is said to be harmonic ),( mh

-convex function, where (0,1]m , if  

[0,1].,,),()()()(1
)(1
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V. If 1=s  and 1=m  in Definition 2, then it reduces to the Definition of harmonic 

h -convex functions.  

Definition 7. [15]. A function : = [ , ] \{0}f I a b     is said to be a 

harmonic h -convex function, if  

[0,1].,,),()()()(1
)(1











tIyxyfthxfth
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Thus it is clear that the class of extended harmonic ),,( msh  convex functions is 

quite general and include several new classes of convex functions as special cases. 

Definition 8. [22] Two functions gf ,  are said to be similarly ordered ( f  is g -

monotone), if and only if,  

( ) ( ), ( ) ( ) 0, , .nf x f y g x g y x y      

Now we show that the product of two extended harmonic ),,( msh -convex 

functions is again extended harmonic ),,( msh -convex function, which is the main 

motivation of our next result. 

Lemma 1. If f  and g  are two similarly ordered extended harmonic ),,( msh -

convex functions, where 1))((1)(  ss thtmh , then the product fg  is again a 

extended harmonic ),,( msh -convex function.  

Proof. Let f  and g be two similarly ordered extended harmonic ),,( msh -convex 

functions. Then  

(1 ) (1 )

mxy mxy
f g

tx m t y tx m t y
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[ ((1 ) ) ( ) ( ) ( )][ ((1 ) ) ( ) ( ) ( ))]s s s sh t f x mh t f y h t g x mh t g y      

 
2= [ ((1 ) )] ( ) ( ) ( ) ((1 ) )[ ( ) ( ) ( ) ( )]s s sh t f x g x mh t h t f x g y f y g x     

2 2[ ( )] ( ) ( )sm h t f y g y  
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= [ ((1 ) ) ( ) ( ) ( ) ( ) ( )][ ( ) ((1 ) )]s s s sh t f x g x mh t f y g y mh t h t     

),()()()()())((1 ygyftmhxgxfth ss  (1) 

where we used the fact that 1.))((1)(  ss thtmh  

This shows that product of two similarly ordered extended harmonic ),,( msh -

convex functions is again a extended harmonic ),,( msh -convex function.  

We also need the following known fact, which plays a crucial role in the 

derivation of main results.  

Remark 1. Let = [ , ] \{0}I a b   and consider the function 
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3. Main Results 

 

 In this section, we obtain Hermite-Hadamard inequalities for harmonic 

),,( msh -convex function. 

Theorem 1. Let : = [ , ] \{0}f I a b     be harmonic ),,( msh - convex 

function, where ( 1,1],s  (0,1]m  and ,a b I  with , , .
b
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m
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Corollary 1. Under the assumptions of Theorem 1 and ,=)( ss tth  we have  
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Theorem 2. Let : = [ , ] \{0}f I a b     be harmonic ),,( msh - convex 

function, where 1,1](s , (0,1]m  and ,a b I  with , .a b ma I   If 

[ , ]f L ma b , then  
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2 2
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which is the required result.  

Corollary 2. Under the assumptions of Theorem 2 and ,=)( ss tth  we have  
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Theorem 3. Let , : = [ , ] \{0}f g I a b     be harmonic ),,( 1msh -convex 

function and harmonic ),,( 2msh -convex function, respectively, where 1,1](s  

and (0,1]m  and   with ,
b

a I
m
 .  If [ , ]

b
f L a
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 , then  
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which is the required result.  

Corollary 3. Under the assumptions of Theorem 3 and ,=)( ss tth  we have  
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Theorem 4. Let : = [ , ] \{0}f I a b     be harmonic ),,( msh -convex 
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Theorem 5. Let , : = [ , ] \{0}f g I a b     be harmonic ),,( 1msh -convex 

function and harmonic ),,( 2msh -convex function, respectively, where  
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where ),(1 baM  is given by (3).  
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which is the required result.  
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Proof. Using the given fact and Lemma 2, we have  
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 To prove the other part of the inequality, we consider  
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 This completes the proof. 
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